Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-630726.v1

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is known that host microRNAs (miRNAs) can be modulated to favor viral infection or to protect the host. Objective: The aim of this study was to identify differentially expressed circulating miRNAs in Brazilian patients with COVID-19 as potential biomarkers for diagnosis and severity. Methods: miRNAs were extracted from the blood plasma of eight patients with COVID-19 (four patients with mild/moderate COVID-19 and four patients with severe/critical COVID-19) and four healthy controls. The patients and controls were matched for sex and age. miRNA expression levels were detected using high-throughput sequencing. Differential miRNA expression and enrichment analyses were further evaluated. Results: A total of 18 human miRNAs were differentially expressed between patients with COVID-19 (n = 8) and controls (n = 4), with 13 significantly upregulated and five significantly downregulated miRNAs. miR-4433b-5p, miR-6780b-3p, miR-6883-3p, miR-320b, miR-7111-3p, miR-4755-3p, miR-320c, and miR-6511a-3p were the most important miRNAs found significantly involved in the PI3K/AKT, Wnt/β-catenin, and STAT3 signaling pathways, which have a crucial role in viral infections. Moreover, 42 miRNAs were differentially expressed between severe/critical patients with COVID-19 (n = 4) and mild/moderate patients with COVID-19 (n = 4). miR-451a, miR-101-3p, miR-185-5p, miR-30d-5p, miR-25-3p, miR-342-3p, miR-30e-5p, miR-150-5p, miR-15b-5p, and miR-29c-3p were the most important miRNAs found to be significantly involved in the Wnt/β-catenin, NF-κβ, and STAT3 signaling pathways, which play crucial roles in immune response and inflammation. Conclusions: Differentially expressed miRNAs found in this study may be used as potential biomarkers for the diagnosis and severity of COVID-19. Larger studies are needed to validate these miRNAs as biomarkers of COVID-19. 


Subject(s)
Coronavirus Infections , Virus Diseases , COVID-19 , Inflammation
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.17.21255518

ABSTRACT

As the current COVID-19 pandemic progresses, more symptoms and signals related to how the disease manifests in the human body arise in the literature. Skin lesions and coagulopathies may be confounding factors on routine care and patient management. We analyzed the metabolic and lipidic profile of the skin from COVID-19 patients using imprints in silica plates as a non-invasive alternative, in order to better understand the biochemical disturbances caused by SARS-CoV-2 in the skin. One hundred and one patients (64 COVID-19 positive patients and 37 control patients) were enrolled in the study from April 2020 to June 2020 during the first wave of COVID-19 in Sao Paulo, Brazil. Fourteen biomarkers were identified related to COVID-19 infection (7 increased and 7 decreased in COVID-19 patients). Remarkably, oleamide has shown promising performance, providing 79.0% of sensitivity on a receiver operating characteristic curve model. Species related to coagulation and immune system maintenance such as phosphatidylserines were decreased in COVID-19 patients; on the other hand, cytokine storm and immunomodulation may be affected by molecules increased in the COVID-19 group, particularly primary fatty acid amides and N-acylethanolamines, which are part of the endocannabinoid system. Our results show that skin imprints may be a useful, noninvasive strategy for COVID-19 screening, by electing a pool of biomarkers with diagnostic potential.


Subject(s)
COVID-19 , Blood Coagulation Disorders
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.24.20161828

ABSTRACT

COVID-19 is still placing a heavy health and financial burden worldwide. Impairments in patient screening and risk management play a fundamental role on how governments and authorities are directing resources, planning reopening, as well as sanitary countermeasures, especially in regions where poverty is a major component in the equation. An efficient diagnostic method must be highly accurate, while having a cost-effective profile. We combined a machine learning-based algorithm with instrumental analysis using mass spectrometry to create an expeditious platform that discriminate COVID-19 in plasma samples within minutes, while also providing tools for risk assessment, to assist healthcare professionals in patient management and decision-making. A cross-sectional study with 728 patients (369 confirmed COVID-19 and 359 controls) was enrolled from three Brazilian epicentres (Sao Paulo capital, Sao Paulo countryside and Manaus) in the months of April, May, June and July 2020. We were able to elect and identify 21 molecules that are related to the diseases pathophysiology and 26 features to patients health-related outcomes. With specificity >97% and sensitivity >83% from blinded data, this screening approach is understood as a tool with great potential for real-world application.


Subject(s)
COVID-19
4.
Darlan da Silva Candido; Ingra Morales Claro; Jaqueline Goes de Jesus; William Marciel de Souza; Filipe Romero Rebello Moreira; Simon Dellicour; Thomas A. Mellan; Louis du Plessis; Rafael Henrique Moraes Pereira; Flavia Cristina da Silva Sales; Erika Regina Manuli; Julien Theze; Luis Almeida; Mariane Talon de Menezes; Carolina Moreira Voloch; Marcilio Jorge Fumagalli; Thais de Moura Coletti; Camila Alves Maia Silva; Mariana Severo Ramundo; Mariene Ribeiro Amorim; Henrique Hoeltgebaum; Swapnil Mishra; Mandev Gill; Luiz Max Carvalho; Lewis Fletcher Buss; Carlos Augusto Prete Jr.; Jordan Ashworth; Helder Nakaya; Pedro da Silva Peixoto; Oliver J Brady; Samuel M. Nicholls; Amilcar Tanuri; Atila Duque Rossi; Carlos Kaue Vieira Braga; Alexandra Lehmkuhl Gerber; Ana Paula Guimaraes; Nelson Gaburo Jr.; Cecilia Salete Alencar; Alessandro Clayton de Souza Ferreira; Cristiano Xavier Lima; Jose Eduardo Levi; Celso Granato; Giula Magalhaes Ferreira; Ronaldo da Silva Francisco Jr.; Fabiana Granja; Marcia Teixeira Garcia; Maria Luiza Moretti; Mauricio Wesley Perroud Jr.; Terezinha Marta Pereira Pinto Castineiras; Carolina Dos Santos Lazari; Sarah C Hill; Andreza Aruska de Souza Santos; Camila Lopes Simeoni; Julia Forato; Andrei Carvalho Sposito; Angelica Zaninelli Schreiber; Magnun Nueldo Nunes Santos; Camila Zolini Sa; Renan Pedra Souza; Luciana Cunha Resende Moreira; Mauro Martins Teixeira; Josy Hubner; Patricia Asfora Falabella Leme; Rennan Garcias Moreira; Mauricio Lacerda Nogueira; - CADDE-Genomic-Network; Neil Ferguson; Silvia Figueiredo Costa; Jose Luiz Proenca-Modena; Ana Tereza Vasconcelos; Samir Bhatt; Philippe Lemey; Chieh-Hsi Wu; Andrew Rambaut; Nick J Loman; Renato Santana Aguiar; Oliver G Pybus; Ester Cerdeira Sabino; Nuno Rodrigues Faria.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.11.20128249

ABSTRACT

Brazil currently has one of the fastest growing SARS-CoV-2 epidemics in the world. Due to limited available data, assessments of the impact of non-pharmaceutical interventions (NPIs) on virus transmission and epidemic spread remain challenging. We investigate the impact of NPIs in Brazil using epidemiological, mobility and genomic data. Mobility-driven transmission models for Sao Paulo and Rio de Janeiro cities show that the reproduction number (Rt) reached below 1 following NPIs but slowly increased to values between 1 to 1.3 (1.0 - -1.6). Genome sequencing of 427 new genomes and analysis of a geographically representative genomic dataset from 21 of the 27 Brazilian states identified >100 international introductions of SARS-CoV-2 in Brazil. We estimate that three clades introduced from Europe emerged between 22 and 27 February 2020, and were already well-established before the implementation of NPIs and travel bans. During this first phase of the epidemic establishment of SARS-CoV-2 in Brazil, we find that the virus spread mostly locally and within-state borders. Despite sharp decreases in national air travel during this period, we detected a 25% increase in the average distance travelled by air passengers during this time period. This coincided with the spread of SARS-CoV-2 from large urban centers to the rest of the country. In conclusion, our results shed light on the role of large and highly connected populated centres in the rapid ignition and establishment of SARS-CoV-2, and provide evidence that current interventions remain insufficient to keep virus transmission under control in Brazil.

SELECTION OF CITATIONS
SEARCH DETAIL